Giáo Dục

Giải bài 55, 56, 57, 58 trang 25 sgk toán 8 tập 1

bài 55 trang 25 sgk toán 8 tập 1

Tìm \(x\), biết:

a)  \({x^3} – {1 \over 4}x = 0\);                     

b) \({(2x – 1)^2} – {(x + 3)^2} = 0\);

c) \({x^2}(x – 3) + 12 – 4x = 0\).

Bài giải:

a) 

\(\eqalign{
& {x^3} – {1 \over 4}x = 0 \Rightarrow x\left( {{x^2} – {1 \over 4}} \right) = 0 \cr
& \Rightarrow x\left( {{x^2} – {{\left( {{1 \over 2}} \right)}^2}} \right) = 0 \cr
& \Rightarrow x\left( {x – {1 \over 2}} \right)\left( {x + {1 \over 2}} \right) = 0 \cr
& \Rightarrow \left[ \matrix{
x = 0 \hfill \cr
\left( {x – {1 \over 2}} \right) = 0 \Rightarrow x = {1 \over 2} \hfill \cr
\left( {x + {1 \over 2}} \right) = 0 \Rightarrow x = – {1 \over 2} \hfill \cr} \right. \cr} \)

Vậy \(x=0,x={1\over 2},x=-{1\over2}\)

b) 

\(\eqalign{
& {(2x – 1)^2} – {(x + 3)^2} = 0 \cr
& \Rightarrow \left[ {(2x – 1) – (x + 3)} \right].\left[ {(2x – 1) + (x + 3)} \right] = 0 \cr
& \Rightarrow (2x – 1 – x – 3).(2x – 1 + x + 3) = 0 \cr
& \Rightarrow (x – 4).(3x + 2) = 0 \cr
& \Rightarrow \left[ \matrix{
x – 4 = 0 \hfill \cr
3x + 2 = 0 \hfill \cr} \right. \Rightarrow \left[ \matrix{
x = 4 \hfill \cr
x = – {2 \over 3} \hfill \cr} \right. \cr} \)

Vậy \(x=4,x=-{2\over 3}\)

c) 

\(\eqalign{
& {x^2}(x – 3) + 12 – 4x = 0 \cr
& \Rightarrow {x^2}(x – 3) – 4(x – 3) = 0 \cr
& \Rightarrow (x – 3)({x^2} – 4) = 0 \cr
& \Rightarrow (x – 3)(x – 2)(x + 2) = 0 \cr
& \Rightarrow \left[ \matrix{
x = 3 \hfill \cr
x = 2 \hfill \cr
x = – 2 \hfill \cr} \right. \cr} \)

Vậy \( x=3,x=2,x=-2\)

 

Bài 56 trang 25 sgk toán 8 tập 1

Xem thêm :  Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết

Tính nhanh giá trị của đa thức:

a) \(x^2+ \frac{1}{2}x+ \frac{1}{16}\) tại \(x = 49,75\);            

b) \(x^2– y^2– 2y – 1\) tại \(x = 93\) và \(y = 6\).

Bài giải:

a) \(x^2+ \frac{1}{2}x+ \frac{1}{16}\) tại \(x = 49,75\)

Ta có: \(x^2+ \frac{1}{2}x+ \frac{1}{16} = x^2+ 2 . x . \frac{1}{4} + \left ( \frac{1}{4} \right )^{2}= \left ( x + \frac{1}{4} \right )^{2}\)

Với \(x = 49,75\) ta có: \(\left ( 49,75 + \frac{1}{4} \right )^{2}= (49,75 + 0,25)^2= 50^2= 2500\)

b) \(x^2– y^2– 2y – 1\) tại \(x = 93\) và \(y = 6\)

Ta có: \({x^2}-{\rm{ }}{y^2}-{\rm{ }}2y{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}{x^2}-{\rm{ }}({y^2} + {\rm{ }}2y{\rm{ }} + {\rm{ }}1)\)

                                          \(= {\rm{ }}{x^2} – {\rm{ }}{\left( {y{\rm{ }} + {\rm{ }}1} \right)^2}\)

                                          \(= {\rm{ }}\left( {x{\rm{ }} – {\rm{ }}y{\rm{ }} – {\rm{ }}1} \right)\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}1} \right)\)

Với \(x = 93, y = 6\) ta được:

\((93 – 6 – 1)(93 + 6 + 1) = 86 . 100 = 8600   \)

 

Bài 57 trang 25 sgk toán 8 tập 1

 Phân tích các đa thức sau thành nhân tử:

a) x2 – 4x + 3;                     b) x2 + 5x + 4;

c) x2 – x – 6;                        d) x4 + 4

(Gợi ý câu d): Thêm và bớt 4×2 vào đa thức đã cho.

Bài giải:

a) x2 – 4x + 3 = x2 – x – 3x + 3

                      = x(x – 1) – 3(x – 1) = (x -1)(x – 3)

b) x2 + 5x + 4 = x2 + 4x + x + 4

Xem thêm :  Đề cương ôn tập học kì i hình học 10

                      = x(x + 4) + (x + 4)

                       = (x + 4)(x + 1)

c) x2 – x – 6 = x2 +2x – 3x – 6

                  = x(x + 2) – 3(x + 2)

                  = (x + 2)(x – 3)

d) x4+ 4 = x4 + 4×2 + 4 – 4×2

             = (x2 + 2)2 – (2x)2 

             = (x2 + 2 – 2x)(x2 + 2 + 2x)

Bài 58 trang 25 sgk toán 8 tập 1

Chứng minh rằng n3 – n chia hết cho 6 với mọi số nguyên n.

Bài giải:

Ta có: n3– n = n(n2 – 1) = n(n – 1)(n + 1)

Với n ∈ Z là tích của ba số nguyên liên tiếp. Do đó nó chia hết cho 3 và 2 mà 2 và 3 là hai số nguyên tố cùng nhau nên n3 – n chia hết cho 2, 3 hay chia hết cho 6.

Giaibaitap.me


Giải bài 55 trang 25 SGK toán 8 tập 1


Giải bài 55 trang 25 sách giáo khoa toán 8 tập 1 với lời giải chi tiết, ngắn gọn nhất sẽ giúp các em nắm bắt các kiến thức cơ bản và nâng cao một cách nhanh nhất
Xem chi tiết lời giải tại đây: https://loigiaihay.com/bai55trang25sgktoan8tap1c43a4780.html
Tìm x , biết:
a) {x^3} \\dfrac{1}{4}x = 0 ;
b) {(2x 1)^2} {(x + 3)^2} = 0 ;
c) {x^2}(x 3) + 12 4x = 0 .

Related Articles

Back to top button