Giáo Dục

Bất phương trình logarit cơ bản – đầy đủ và dễ hiểu nhất

bất phương trình logarit cơ bản là dạng bài tập không thể thiếu trong các đề thi THPT Quốc gia. Tuy nhiên, không phải bạn nào cũng thành thạo dạng toán này, đặc biệt là các công thức bất phương trình logarit.

Tổng quan về Bất phương trình Logarit cơ bản

1. Ôn tập định nghĩa bất phương trình Logarit cơ bản

Nếu phương trình Logarit có dạng $log_a{x}= b (a> 0; a\neq1)$ thì bất phương trình logarit sẽ có dạng $log_a{x}> b, log_a{x}\geqslant b, log_a{x}< b, log_a{x}\leqslant b$

Hướng dẫn một số cách tìm nghiệm cho bất phương trình Logarit cơ bản $log_a{x}> b$

– Xét bất phương trình $log_a{x}> b$ 

+ Trường hợp a > 1: $log_a{x}> b \Leftrightarrow x> a^{b}$

+ Trường hợp 0< 0<1 : $log_a{x}> b \Leftrightarrow 0< x< a^{b}$

– Vẽ đồ thị minh họa bất phương trình  $log_a{x}> b$ với đồ thị hàm số $y = log_a{x}$ và đường thẳng y=b trên cùng một hệ trục tọa độ:

Từ đồ thị ta thấy:

+ Trường hợp a>1: $log_a{x}> b \Leftrightarrow x> a^{b}$

+ Trường hợp 0 b \Leftrightarrow 0< x< a^{b}$

– Kết luận: Nghiệm của bất phương trình được thể hiện như sau:

Trường hợp

Tập nghiệm

a>1

0

$log_a{x}> b$

$(a^{b};+\infty)$

$[0,a^{b}]$

$log_a{x}\geqslant b$

$[a^{b};+\infty )$

$(0,a^{b}]$

Hướng dẫn một số cách tìm nghiệm cho bất phương trình log_a{x}< b$:

– Xét bất phương trình $log_a{x}< b$

+ Trường hợp $a> 0:log_a{x}< b \Leftrightarrow 0< x< a^{b}$

+ Trường hợp $0< a<  1: log_a{x}> b \Leftrightarrow x> a^{b}$

Vẽ đồ thị minh họa bất phương trình $log_a{x}< b$  với đồ thị hàm số $y= log_a{x}$ và đường thẳng y=b trên cùng một hệ trục tọa độ:

Xem thêm :  Soạn bài vào phủ chúa trịnh - ngắn gọn nhất>

Từ đồ thị ta thấy:

+ Trường hợp a>1: $log_a{x}> b \Leftrightarrow x> a^{b}$

+ Trường hợp 0 b \Leftrightarrow 0< x< a^{b}$

– Kết luận: Nghiệm của bất phương trình được thể hiện như sau:

Trường hợp

Tập nghiệm

a>1

0

$log_a{x}< b$

$(0;a^{b})$       

$(a^{b};+\infty)$

$log_a{x}\geqslant b$

$(0;a^{b}]$

$[a^{b};+\infty )$

2. Các công thức bất phương trình Logarit cơ bản và hướng dẫn cách giải chi tiết

2.1 Dạng bất phương trình $log_{a}f(x)\leqslant log_{a}g(x)$

Phương pháp giải bất phương trình Logarit

Để bất phương trình dạng $log_{a}f(x)\leqslant log_{a}g(x)$ ta thực hiện phép biến đồi sau

Hoặc $log_{a}f(x)\leqslant log_{a}g(x)\left\{\begin{matrix}
 a> 0&  & \\ 
 0< f(x)< g(x)&  & 
\end{matrix}\right.$

Hoặc $\left\{\begin{matrix}
 0< a< 1&  & \\ 
 f(x)>  g(x)< 0&  & 
\end{matrix}\right.$

Ví dụ 1:

Giải bất phương trình $log_{\frac{1}{5}}(3x-5)> log_{\frac{1}{5}}(x+1)$

Điều kiện $(3x-5)> 0, x+1> 0\Rightarrow x> \frac{5}{3}$

Vì bất phương trình có cơ số <1 nên:

$log_{\frac{1}{5}}(3x-5)> log_{\frac{1}{5}}(x+1)\Leftrightarrow 3x-5< x+1\Leftrightarrow 2x< 6\Leftrightarrow x< 3$

Kết hợp với điều kiện, bất phương trình có nghiệm $(\frac{5}{3};3)$

Ví dụ 2: 

Giải bất phương trinh $log_{3}(x^{2}-1)< 1-log_{\frac{1}{3}}(x-1)$

– Cách 1

Điều kiện $x^{2}-1> 0, x-1> 0\Leftrightarrow x> 1$

$log_{3}(x^{2}-1)<1+log_{3}(x-1) \Leftrightarrow log_{3}(x^{2}-1)< log_{3}(x-1))$

$\Leftrightarrow x^{2}-1< 3(x-1)\Leftrightarrow x_{2}-3x+2< 0\Leftrightarrow (x-1)(x-2)< 0\Leftrightarrow 1< x< 2$

Kết hợp với điều kiện bất phương trình có nghiệm (1;2)

– Cách 2

$log_{3}(x^{2}-1)<1+log_{3}(x-1)) \Leftrightarrow log_{3}(x^{2}-1)<1+  log_{3}(x-1)$

$log_{3}(x^{2}-1)<1+log_{3}(x-1)) \Leftrightarrow 0< x^{2}-1< 3(x-1)$

$\left\{\begin{matrix}x^{2}-1>0&&\\x^{2}-3x+2<0&&\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}\left | x \right | > 1&  & \\ 1< x< 2&  & \end{matrix}\right.\Leftrightarrow 1< x< 2$

Vậy bất phương trình có tập nghiệm là (1;2)

2.2 Dạng bất phương trình $log_{a}f(x)< b$

Phương pháp giải bất phương trình Logarit

Xem thêm :  Định luật tuần hoàn men-đê-lê-ép, độ âm điện, sự biến đổi tính chất trong 1 chu kỳ, 1 nhóm - hóa 10 bài 9

Để giải bất phương trình dạng $log_{a}f(x)< b$ ta thực hiện phép biến đổi sau

$log_{a}f(x)< b$ khi và chỉ khi hoặc:

+ $\left\{\begin{matrix}a> 1 &  & \\ 0< f(x) < a^{b}&  & \end{matrix}\right.$

+ $\left\{\begin{matrix}0< a< 1 &  & \\ 0< f(x)> g(x) < a& & \end{matrix}\right.$

Ví dụ

Giải phương trình: $log_{\frac{1}{3}}(x^{2}-6x+18)+2log_{3}(x-4)< 0$

Điều kiện $\left\{\begin{matrix}x^{2}-6x+10> 0&  & \\ x-4& & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}(x-3)^{2}+ 9> 0&  & \\ x> 4&  & \end{matrix}\right.\Leftrightarrow x> 4$

Ta có:

$log_{\frac{1}{3}}(x^{2}-6x+18)+2log_{3}(x-4)< 0$

$\Leftrightarrow -log_{3}(x^{2}-6x+18)+2log_{3}(x-4)< 0$

$\Leftrightarrow (x-4)^{2}< (x^{2}-6x+18)$

$\Leftrightarrow x^{2}-8x+16< x^{2}-6x+18$

$\Leftrightarrow 2x> -2\Leftrightarrow x> -1$

Kết hợp với điều kiện BPT có tập nghiệm: $x> 4$

2.3 Dạng bất phương trình $log_{a}f(x) > b$

Phương pháp giải:

Để giải bất phương trình dạng $log_{a}f(x)> b$ ta thực hiện các phép đổi sau

$log_{a}f(x)> b$ khi và chỉ khi hoặc:

+ $\left\{\begin{matrix}a> 1 &  & \\ f(x)>a^{b} &  & \end{matrix}\right.$

+ $\left\{\begin{matrix}0< a< 1&  & \\ 0< f(x)< a^{b}&  & \end{matrix}\right.$

Ví dụ

Giải phương trình: $log_{8}(4-2x)\geqslant 2$

Điều kiện: $4-2x> 2\Rightarrow x< 2$

Ta có: $log_{8}(4-2x)\geqslant 2\Leftrightarrow log_{8}(4-2x)\geqslant log_{8}8^{2}$

$\Leftrightarrow 4-2x\geqslant 8^{2}\Leftrightarrow 2x\leqslant 60\Leftrightarrow x\leqslant -30$

Kết hợp với điều kiện BPT có tập nghiệm $(-\infty;30]$

Xem thêm: Cách giải bất phương trình Logarit

3. Bài tập bất phương trình Logarit cơ bản – có đáp án

Các em tải bộ đề tại: Bài tập bất phương trình Logarit cơ bản

Các em cũng có thể xem thêm Livestream về Bất phương trình Logarit của thầy Thành Đức Trung tại:

Trên đây là toàn bộ công thức bất phương trình logarit cơ bản cũng như những dạng bài điển hình mà các em thường gặp nhất trong các đề thi THPTQG. Các em nhớ theo dõi các bài viết trên trang để có thêm nhiều kiến thức mới nhé! 

Xem thêm :  Các phép liên kết câu và liên kết đoạn văn


Bất Phương Trình Logarit (Toán 12) | Thầy Nguyễn Phan Tiến


Bất Phương Trình Logarit (Toán 12) | Thầy Nguyễn Phan Tiến
? Đăng kí học ĐẦY ĐỦ VIDEO LÝ THUYẾT VÀ BÀI TẬP TỰ LUYỆN
có Full Đáp Án Chi Tiết xem ở đây: https://thaynguyenphantien.vn
? Các em tham gia các nhóm học tập trên FB nhé
2004 Toán Thầy Tiến: https://thaynguyenphantien.vn/2k4
2005 Toán Thầy Tiến: https://thaynguyenphantien.vn/2k5
2006 Toán Thầy Tiến: https://thaynguyenphantien.vn/2k6
? Fanpage Chính Thức : https://fb.com/thaynguyenphantien
? Facebook cá nhân : https://fb.com/thaytientoan8910
? Website: https://thaynguyenphantien.vn
? Học ONLINE : Khóa học Video trên Web kết hợp với Livestream Fb đầy đủ bài tập, đáp án chi tiết và hỗ trợ tận tình, giải đáp thắc mắc bài tập mọi lúc mọi nơi, khóa luyện thi chuyên nghiệp nhất
? Học OFFLINE tại tòa SinhPlaza, số 18 Đức Diễn, Bắc Từ Liêm, Hà Nội.
Khi các bạn vẫn đang xả hơi, ham chơi thì đối thủ vẫn đang âm thầm nỗ lực học tập.
Vậy nên chúng ta không bắt đầu cố gắng từ bây giờ thì chúng ta \

Related Articles

Back to top button