Giáo Dục

Tổng hợp các công thức về phương trình đường thẳng lớp 10 cực hay

Tổng hợp các công thức về phương trình đường thẳng lớp 10 cực hay

Tổng hợp các công thức về phương trình đường thẳng lớp 10 cực hay

1. Vectơ pháp tuyến của đường thẳng

Quảng cáo

+ Vectơ

gọi là vectơ pháp tuyến (VTPT) của ∆ nếu giá của nó vuông góc với ∆.

Nhận xét : Nếu
là VTPT của ∆ thì k.(k ≠ 0) cũng là VTPT của ∆.

+ Trong mặt phẳng tọa độ; mọi đường thẳng đều có phương trình tổng quát dạng:

    ax + by + c = 0 với a2 + b2 > 0.

+ Các dạng đặc biệt của phương trình tổng quát:

    – Đường thẳng by + c = 0 song song hoặc trùng với trục Ox.

    – Đường thẳng ax + c = 0 song song hoặc trùng với trục Oy.

    – Đường thẳng ax + by = 0 đi qua gốc tọa độ.

+ Đường thẳng có phương trình:
= 1 ( a ≠ 0; b ≠ 0) đi qua hai điểm A(a; 0) và B(0; b)

Phương trình trên được gọi là phương trình đường thẳng theo đoạn chắn.

+ Xét đường thẳng ∆ có phương trình tổng quát: ax + by + c= 0

   Nếu b ≠ 0 thì phương trình trên được đưa về dạng: y= kx + m ( *)

   Khi đó k được gọi là hệ số góc của đường thẳng ∆ và ( *) gọi là phương trình của ∆ theo hệ số góc.

Quảng cáo

2. Vị trí tương đối của hai đường thẳng

Cho hai đường thẳng : ∆1 = a1x + b1y + c1 = 0 ; ∆2 = a2x + b2y + c2 = 0

Để xét vị trí tương đối của hai đường thẳng ∆1 , ∆2 ta xét số nghiệm của hệ phương trình

Xem thêm :  Soạn bài trau dồi vốn từ

(I)

Chú ý: Nếu a2b2c2 ≠ 0 thì :

∆1 cắt ∆2 ⇔

∆1 song song ∆2 ⇔

∆1 trùng ∆2 ⇔

1. Vectơ chỉ phương của đường thẳng

Vectơ ≠ được gọi là vectơ chỉ phương (VTCP) của đường thẳng ∆ nếu giá của nó song song hoặc trùng với ∆.

Nhận xét : Nếu là VTCP của ∆ thì k.( k ≠0) cũng là VTCP của ∆.

2. Phương trình tham số của đường thẳng

Cho đường thẳng ∆ đi qua M0 (x0; y0) và ( a; b) là VTCP. Khi đó phương trình tham số của đường thẳng có dạng:

( 1)

Hệ ( 1) được gọi là phương trình tham số của đường thẳng ∆, với tham số t.

Quảng cáo

3. Phương trình chính tắc của đường thẳng

Cho đường thẳng ∆ đi qua M0 (x0; y0) và (a;b) (với a ≠ 0, b ≠ 0 ) là VTCP. Khi đó phương trình chính tắc của đường thẳng có dạng:

(2)

Phương trình ( 2) được gọi là phương trình chính tắc của đường thẳng.

Nếu a = 0 hoặc b = 0 thì đường thẳng không có phương trình chính tắc.

4. Liên hệ giữa VTCP và VTPT

VTPT và VTCP vuông góc với nhau. Do đó nếu ∆ có VTCP ( a; b) thì ( b; -a) là một VTPT của ∆.

5. Khoảng cách từ một điểm đến một đường thẳng.

Khoảng cách từ một điểm M(x0; y0) đến đường thẳng ∆: ax + by + c = 0 cho bởi công thức:

    d(M0, ∆) =

6. Vị trí của hai điểm đối với một đường thẳng.

Xem thêm :  Kim loại dẫn điện tốt vì

Cho đường thẳng ∆: ax + by + c = 0 và hai điểm M(xM; yM); N(xN; yN) không nằm trên ∆. Khi đó:

    + Hai điểm M và N cùng phía so với ∆ khi và chỉ khi:

       ( axM + byM + c).( axN + byN + c) > 0.

    + Hai điểm M và N khác phía so với ∆ khi và chỉ khi:

       ( axM + byM + c).(axN + byN + c) < 0.

7. Góc giữa hai đường thẳng.

+ Định nghĩa: Hai đường thẳng a và b cắt nhau tạo thành bốn góc. Số đo nhỏ nhất của các góc đó được gọi là số đo của góc giữa hai đường thẳng a và b.

Khi a song song hoặc trùng với b, ta quy ước góc giữa chúng là 00.

Kí hiệu: (a;b)

+ Góc giữa hai đường thẳng không vượt quá 900 nên ta có:

   (a; b) = ( ; ) nếu ( ; ) ≤ 900

    (a; b) = 1800 – ( ; ) nếu ( ; ) > 900

    Trong đó; và lần lượt là VTCP của a và b.

+ Góc giữa hai đường thẳng Δ1 và Δ2 có VTPT = (a1; b1) và = (a2; b2) được tính theo công thức:

cos(Δ1, Δ2) = cos(, ) =

Chuyên đề Toán 10: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm lớp 10 tại khoahoc.vietjack.com

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.


Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Xem thêm :  Quotes cuộc sống – 69 dòng châm ngôn cuộc sống hay & ý nghĩa nhất

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

phuong-phap-toa-do-trong-mat-phang.jsp


Phương trình đường thẳng – Môn toán lớp 10 – Thầy giáo: Nguyễn Công Chính


Đường thẳng là một khái niệm đã quá đỗi quen thuộc đối với HS ngay từ khi học tiểu học, lên lớp 10, chúng ta sẽ cùng thầy Nguyễn Công Chính khám phá những kiến thức cực mới mẻ về đường thẳng các con nhé. Trong bài giảng này, thầy sẽ hướng dẫn các con viết phương trình mặt phẳng (phương trình tham số, phương trình chính tắc, phương trình tổng quát), giới thiệu về hệ số góc của đường thẳng, vị trí tương đối của các đường thẳng,… bên cạnh đó là hệ thống ví dụ vô cùng trực quan cho từng dạng.
Còn rất nhiều bài giảng hay của môn Toán 10 đang chờ đón các em tại đây: https://tuyensinh247.com/hoctructuyenmontoanlop10c142.html Học trực tuyến tại: http://tuyensinh247.com
Fanpage: https://fb.com/luyenthi.tuyensinh247/

Related Articles

Check Also
Close
Back to top button